While driving on highways, every driver tries to be aware of the behavior of surrounding vehicles, including possible emergency braking, evasive maneuvers trying to avoid obstacles, unexpected lane changes, or other emergencies that could lead to an accident. In this paper, human's ability to predict lane changes in highway scenarios is analyzed through the use of video sequences extracted from the PREVENTION dataset, a database focused on the development of research on vehicle intention and trajectory prediction. Thus, users had to indicate the moment at which they considered that a lane change maneuver was taking place in a target vehicle, subsequently indicating its direction: left or right. The results retrieved have been carefully analyzed and compared to ground truth labels, evaluating statistical models to understand whether humans can actually predict. The study has revealed that most participants are unable to anticipate lane-change maneuvers, detecting them after they have started. These results might serve as a baseline for AI's prediction ability evaluation, grading if those systems can outperform human skills by analyzing hidden cues that seem unnoticed, improving the detection time, and even anticipating maneuvers in some cases.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes?


    Beteiligte:
    Quintanar, A. (Autor:in) / Izquierdo, R. (Autor:in) / Parra, I. (Autor:in) / Fernandez-Llorca, D. (Autor:in) / Sotelo, M. A. (Autor:in)


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    1696919 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes?

    Quintanar, A. / Izquierdo, R. / Parra, I. et al. | ArXiv | 2020

    Freier Zugriff

    THE PREVENTION CHALLENGE: HOW GOOD ARE HUMANS PREDICTING LANE CHANGES?

    Quintanar, A. / Izquierdo, R. / Parra, I. et al. | British Library Conference Proceedings | 2020


    Predicting lane changes of other vehicles

    YANG CHUN / ANKA LASZLO / RIGO ADAM et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Predicting lane changes of other vehicles

    YANG CHUN / ANKA LASZLO / RIGO ADAM et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    TuSimple Lane Detection Challenge

    Sato, Takami | DataCite | 2024