Multi-label classification is a supervised Machine Learning problem, which can assign zero or more mutually non-exclusive class labels for an instance. It is different from the multi-class classification which assigns exactly one class label out of many predefined class labels for an instance. In this paper, we explore both proprietary and open-source generative Large Language Models (LLMs) for multi-label classification problems. Specifically, we fine-tune these LLMs and provide insights into their behaviors with different prompts and training constraints such as few-shots settings in Aviation Safety and Autonomy domains. We provide recommendations of choosing LLMs for multi-label classifications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Label Classification with Generative Large Language Models


    Beteiligte:


    Erscheinungsdatum :

    29.09.2024


    Format / Umfang :

    212203 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Label Propagation Algorithm for Multi-Label Classification Using Hadoop Technology

    Sun, Xia / Zhang, Minchao / Feng, Jun et al. | British Library Online Contents | 2015



    Evaluation of Two Systems on Multi-class Multi-label Document Classification

    Luo, X. / Zincir-Heywood, A. N. | British Library Conference Proceedings | 2005


    Multi-label UAV sound classification using Stacked Bidirectional LSTM

    Utebayeva, Dana / Almagambetov, Akhan / Alduraibi, Manal et al. | IEEE | 2020


    Multi-label convolutional neural network based pedestrian attribute classification

    Zhu, Jianqing / Liao, Shengcai / Lei, Zhen et al. | British Library Online Contents | 2017