In this paper, we propose the use of semantic segmentation to incorporate scene information for better understanding of human motion in crowded environments. Our proposed SSeg-LSTM method leverages SegNet, which is a semantic segmentation encoder-decoder architecture, to extract semantically meaningful scene features. We then train the Social Scene LSTM (SS-LSTM) model with the contextual information regarding dynamics, social neighborhood, and scene semantics to predict future trajectory points of pedestrians. Experimental evaluation on public datasets show better performance for SSeg-LSTM than SS-LSTM which highlights the utility of semantic encoding for trajectory prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SSeg-LSTM: Semantic Scene Segmentation for Trajectory Prediction


    Beteiligte:


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    3475711 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning Semantic Scene Models by Trajectory Analysis

    Wang, X. / Tieu, K. / Grimson, E. | British Library Conference Proceedings | 2006


    Pedstrian Trajectory Prediction Based on LSTM

    Li, Shaosong / Jiang, Junchen / Zhou, Qingbin et al. | IEEE | 2023


    Semantic video scene segmentation and transfer

    Gritti, T. / Damkat, C. / Monaci, G. | British Library Online Contents | 2014


    Trajectory prediction of UAV Based on LSTM

    Shu, Peng / Chen, Chengbin / Chen, Baihe et al. | IEEE | 2021


    Vehicle trajectory prediction based on LSTM network

    Yang, Zhifang / Liu, Dun / Ma, Li | IEEE | 2022