This paper presents an approach to detect and recognize traffic signs present in the urban scenes in China. The algorithm is composed of three steps that are color segmentation, shape detection and pictogram recognition. In the first step Ridge Regression is used to obtain a precise segmentation in RGB color space and achieves the same good performance as many machine learning based methods while using less computation time. Recognition process include a novel feature extraction involves OTSU method, and the feature extracted is robust against illumination variations and distortions. The algorithm has been run on several thousands of images with promising results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic sign recognition using Ridge Regression and OTSU method


    Beteiligte:
    Yanhua Jiang, (Autor:in) / Shengyan Zhou, (Autor:in) / Yan Jiang, (Autor:in) / Jianwei Gong, (Autor:in) / Guangming Xiong, (Autor:in) / Huiyan Chen, (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    640513 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Sign Recognition Using Ridge Regression and OTSU Method

    Jiang, Y. / Zhou, S. / Gong, J. et al. | British Library Conference Proceedings | 2011


    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    MIYASATO KAZUHIRO / KOYASU TOSHIYA | Europäisches Patentamt | 2023

    Freier Zugriff

    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    SHINOMIYA TERUHIKO | Europäisches Patentamt | 2017

    Freier Zugriff

    Traffic sign recognition

    Howard, A.R. | Engineering Index Backfile | 1964


    Traffic Sign Recognition Using CNN

    Prasanna, Chepuri / Kumar, V. Vishal / Kumar, G. A. E. Satish | IEEE | 2022