Clustering traffic scenarios and detecting novel scenario types are required for scenario-based testing of autonomous vehicles. These tasks benefit from either good similarity measures or good representations for the traffic scenarios. In this work, an expert-knowledge aided representation learning for traffic scenarios is presented. The latent space so formed is used for successful clustering and novel scenario type detection. Expert-knowledge is used to define objectives that the latent representations of traffic scenarios shall fulfill. It is presented, how the network architecture and loss is designed from these objectives, thereby incorporating expert-knowledge. An automatic mining strategy for traffic scenarios is presented, such that no manual labeling is required. Results show the performance advantage compared to baseline methods. Additionally, extensive analysis of the latent space is performed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios


    Beteiligte:


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    1725790 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios

    Wurst, Jonas / Balasubramanian, Lakshman / Botsch, Michael et al. | ArXiv | 2022

    Freier Zugriff

    ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios

    Balasubramanian, Lakshman / Wurst, Jonas / Egolf, Robin et al. | IEEE | 2022


    Knowledge Engineering For An Air Traffic Expert System

    Galotti, V. P. / Kornecki, A. J. / Air Traffic Control Association | British Library Conference Proceedings | 1991


    Expert Knowledge-Guided Travel Demand Estimation: Neuro-Fuzzy Approach

    Seyedabrishami, Seyedehsan / Shafahi, Yousef | Taylor & Francis Verlag | 2011


    Expert Knowledge-Guided Travel Demand Estimation: Neuro-Fuzzy Approach

    Seyedabrishami, Seyedehsan | Online Contents | 2011