The energy consumption pattern of the Lithium-ion (Li-ion) battery bank in Electric Vehicles (EVs) exhibits rapid fluctuations for different driving cycles, leading to battery degradation and shortening its lifetime. This paper presents an energy management strategy for a hybrid EV energy storage system (HESS) that integrates the EV battery with a bank of supercapacitors (SC), aiming to reduce the degradation rate of EV batteries. The presented work uses data from driving simulations conducted on Simulation of Urban MObility (SUMO) traffic simulator tool for a low-speed zone, particularly a university campus. A MATLAB/Simulink-based simulation is conducted for the proposed energy management strategy to demonstrate how the system manages the energy flow between the battery and the supercapacitors. Results reveal that the proposed model is able to reduce the EV battery temperature and hence reduce its degradation by approximately 50% compared to the situation when the Li-ion battery is solely used.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance Enhancement of a Hybrid Battery-Supercapacitor EV Energy Storage System


    Beteiligte:


    Erscheinungsdatum :

    2021-06-21


    Format / Umfang :

    944795 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Combined Battery/Supercapacitor Hybridised Energy Storage Systems for Hybrid Electric Vehicles

    Sarwar, Wasim / Offer, Gregory James / Gopalakrishnan, Krishnakumar et al. | British Library Conference Proceedings | 2016


    $ H_{∞} $ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

    Bai, Zhifeng / Yan, Zengfeng / Wu, Xiaolan et al. | Online Contents | 2019


    H∞ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

    Bai, Zhifeng / Yan, Zengfeng / Wu, Xiaolan et al. | Springer Verlag | 2019