A model-based recognition method is introduced which is formulated as an optimization problem. An energy function is derived which represents the constraints on the best solution in order to find the best match. A two-dimensional binary Hopfield neural network is implemented to minimize the energy function. The state of each neuron in the Hopfield network represents the possibility of a match between a node in the model graph and a node in the scene graph.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Object recognition by a Hopfield neural network


    Beteiligte:
    Nasrabadi, N.M. (Autor:in) / Li, W. (Autor:in) / Choo, C.Y. (Autor:in)


    Erscheinungsdatum :

    01.01.1990


    Format / Umfang :

    298974 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object Recognition Using Multi-Layer Hopfield Neural Network

    Young, S. S. / Scott, P. D. / Nasrabadi, N. M. et al. | British Library Conference Proceedings | 1994



    Photonic implementation of Hopfield neural network for associative pattern recognition [4417-75]

    Munshi, S. / Bhattacharyya, S. / Datta, A. K. et al. | British Library Conference Proceedings | 2001


    Image reconstruction by a Hopfield neural network

    Srinivasan, V. / Han, Y. K. / Ong, S. H. | British Library Online Contents | 1993


    Hopfield Neural Network Based Stereo Matching Algorithm

    Achour, K. / Mahiddine, L. | British Library Online Contents | 2002