This paper deals with the problem of censoring outliers in a class of complex multivariate elliptically contoured distributed radar data, which is a vital issue in radar signal processing applications, such as adaptive radar detection and space-time adaptive processing. The maximum likelihood (ML) estimate of the outlier subset is derived resorting to the generalized likelihood function (GLF) criterion. Since the ML estimate involves the solution of a combinatorial problem, a reduced complexity but approximate ML (AML) procedure is also considered. At the analysis stage, the performance of the AML method is evaluated in the presence of both simulated and real radar data, also in comparison with the conventional generalized inner product (GIP) and the reiterative censored GIP (RCGIP) algorithms. The results highlight that the AML technique achieves a satisfactory performance level and can outperform both GIP and RCGIP in some situations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Censoring Outliers in Radar Data: An Approximate ML Approach and its Analysis


    Beteiligte:
    Han, Sudan (Autor:in) / De Maio, Antonio (Autor:in) / Carotenuto, Vincenzo (Autor:in) / Pallotta, Luca (Autor:in) / Huang, Xiaotao (Autor:in)


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    4676693 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Censoring distributed nonlinear state estimates in radar networks

    Conte, Armond S. / Niu, Ruixin | SPIE | 2016


    Detecting Outliers in Cell Phone Data

    Horn, Christopher / Klampfl, Stefan / Cik, Michael et al. | Transportation Research Record | 2014


    A neural approach to zoom-lens camera calibration from data with outliers

    Ahmed, M. / Farag, A. | British Library Online Contents | 2002


    Data Censoring in Renewable Energy Enabled Wireless Sensor Networks

    Yang, Miao / Yang, Liu / Zhu, Zhenghang et al. | IEEE | 2019


    SENSOR FUSION WITH CENSORING LIMITS

    Allik, Bethany L. | TIBKAT | 2020