This paper presents an implementation and comparison between odometry and probabilistic algorithms for the mobile robot localization problem in indoor environments.The hardware and software tools used for the experiments are briefly described. Also, a software architecture is proposed to make easier the development of computer applications including the tested algorithms which are used to get the results to compare.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimental Comparison of Extended Kalman and Particle Filter in Mobile Robotic Localization


    Beteiligte:


    Erscheinungsdatum :

    01.09.2009


    Format / Umfang :

    896046 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Comparison of Extended Kalman Filter, Sigma-Point Kalman Filter, and Particle Filter in GPS/INS Sensor Fusion

    Gross, J. / Gu, Y. / Gururajan, S. et al. | British Library Conference Proceedings | 2010



    A New Adaptive Extended Kalman Filter for Cooperative Localization

    Yulong Huang / Yonggang Zhang / Bo Xu et al. | IEEE | 2018



    Localization of Leader-Follower Robot Using Extended Kalman Filter

    Nurmaini, Siti / Pangidoan, Sahat | BASE | 2018

    Freier Zugriff