Anomaly detection, or outlier detection, is a crucial task in various domains to identify instances that significantly deviate from established patterns or the majority of data. In the context of autonomous driving, the identification of anomalies is particularly important to prevent safety-critical incidents, as deep learning models often exhibit overconfidence in anomalous or outlier samples. In this study, we explore different strategies for training an image semantic segmentation model with an anomaly detection module. By introducing modifications to the training stage of the state-of-the-art DenseHybrid model, we achieve significant performance improvements in anomaly detection. Moreover, we propose a simplified detector that achieves comparable results to our modified DenseHybrid approach, while also surpassing the performance of the original DenseHybrid model. These findings demonstrate the efficacy of our proposed strategies for enhancing anomaly detection in the context of autonomous driving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Synthetic Outlier Generation for Anomaly Detection in Autonomous Driving


    Beteiligte:
    Bikandi, Martin (Autor:in) / Velez, Gorka (Autor:in) / Aginako, Naiara (Autor:in) / Irigoien, Itziar (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    928050 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PERCEPTION ANOMALY DETECTION FOR AUTONOMOUS DRIVING

    SHA LONG / ZHANG JUNLIANG / GE RUNDONG et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    ADS-Lead: Lifelong Anomaly Detection in Autonomous Driving Systems

    Han, Xingshuo / Zhou, Yuan / Chen, Kangjie et al. | IEEE | 2023


    Perception Datasets for Anomaly Detection in Autonomous Driving: A Survey

    Bogdoll, Daniel / Uhlemeyer, Svenja / Kowol, Kamil et al. | IEEE | 2023


    Traffic flow data anomaly identification method based on fuzzy outlier detection

    WANG XITE / LI SHANZHI / BAI MEI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    AUTONOMOUS DRIVING DEVICE AND METHOD FOR OPERATING AUTONOMOUS DRIVING DEVICE IN ANOMALY SITUATION

    JEONG SEONG GYUN / LEE SEUNG JAE | Europäisches Patentamt | 2021

    Freier Zugriff