Currently, technology has shown a lot of advancement in the field of medicine. Modalities available for capturing the brain images are Magnetic Resonance Imaging (MRIs), Positron Emission Tomography (PET) scan, and Computed Tomography (CT) scan. Among these MR is the most significantly used tool for judgment related to the anatomy of the brain. It is very essential for the classification of tumors in early-stage which supports avoiding the deaths due to brain tumors. Computerized classification of the tumor using MRI is proposed where features are extracted using the Gray Level Co-occurrence Matrices (GLCM) and classification using the BPNN. An accuracy of 94% is achieved with the proposed methodology.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Intelligent System for Classification of Brain Tumours With GLCM and Back Propagation Neural Network


    Beteiligte:
    Jabber, Bhukya (Autor:in) / Rajesh, K. (Autor:in) / Haritha, D. (Autor:in) / Basha, Cmak Zeelan (Autor:in) / Parveen, Syed Nazia (Autor:in)


    Erscheinungsdatum :

    05.11.2020


    Format / Umfang :

    360788 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Using GLCM features in Haar wavelet transformed space for moving object classification

    Kiaee, Nadia / Hashemizadeh, Elham / Zarrinpanjeh, Nima | IET | 2019

    Freier Zugriff

    Investigation of Image Classification Using HOG, GLCM Features, and SVM Classifier

    Ge, Jianyue / Liu, Haoting | British Library Conference Proceedings | 2020


    Using GLCM features in Haar wavelet transformed space for moving object classification

    Kiaee, Nadia / Hashemizadeh, Elham / Zarrinpanjeh, Nima | Wiley | 2019

    Freier Zugriff