We present a method for appearance management for model-based visual tracking. The approach provides a concise mechanism for mapping image information to a model surface by taking into consideration uncertainties from the mapping process and by propagating appearance information from visible high-confidence surface regions to hidden or low-confidence regions. The method allows acquiring and utilizing appearance information online from available data, eliminating the need for offline appearance information. The problem is modeled with a continuous Markov random field (MRF) with clique potentials defined as energy functionals over color distributions with the Earth mover distance replacing traditional distance measures between random variables. A general MAP-MRF solution usable for general distributions as well as an efficient real-time capable linear close form approximation are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust probabilistic estimation of uncertain appearance for model-based tracking


    Beteiligte:
    Krahnstoever, N. (Autor:in) / Sharma, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    415610 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Probabilistic Estimation of Uncertain Appearance for Model-Based Tracking

    Krahnstoever, N. / Sharma, R. | British Library Conference Proceedings | 2002


    Visual tracking and recognition using probabilistic appearance manifolds

    Lee, K. C. / Ho, J. / Yang, M. H. et al. | British Library Online Contents | 2005



    Robust Online Appearance Models for Visual Tracking

    Jepson, A. D. / Fleet, D. J. / El-Maraghi, T. F. et al. | British Library Conference Proceedings | 2001


    Robust object tracking under appearance change conditions

    Wang, Q. C. / Gong, Y. H. / Yang, C. H. et al. | British Library Online Contents | 2010