We address the problem of articulated posture estimation in its general form. Namely, the recovery of full 3D articulated posture parameters from an uncontrolled scene. Stochastic modeling of low-level segmented image data is unified with models of object kinematic structure through a constrained mixture of observation processes. A modified expectation-maximization algorithm is proposed for this purpose. Early experiments qualitatively demonstrate the efficacy of our approach, and provide a context for integration for more sophisticated image cues.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimation of articulated motion using kinematically constrained mixture densities


    Beteiligte:
    Hunter, E.A. (Autor:in) / Kelly, P.H. (Autor:in) / Jain, R.C. (Autor:in)


    Erscheinungsdatum :

    01.01.1997


    Format / Umfang :

    898230 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch