This paper investigates the problem of joint active user detection (AUD) and channel estimation (CE) for grant-free random access in a cell-free massive multi-input multi-output (MIMO) system. Due to the sporadic activation of users and the channel block sparsity caused by large-scale fading in the cell-free system, the effective channel matrix exhibits a dual sparsity property. Considering this dual sparsity, joint AUD and CE are formulated as a sparse signal reconstruction problem based on compressed sensing. A ‘three-choice-one’ prior assumption is employed to extract the block sparsity in the antenna dimension. Then a variational Bayesian inference-based algorithm is proposed, and the simulation results validate the reliability of the proposed algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Variational Bayesian Inference-Based Joint Active User Detection and Channel Estimation in Cell-Free Massive MIMO


    Beteiligte:
    Liu, Junhui (Autor:in) / Zhu, Shihao (Autor:in) / Zhao, Ming (Autor:in) / Zhou, Wuyang (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1033749 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Sparse Bayesian Inference Based Direct Localization for Massive MIMO

    Liu, Guanying / Liu, An / Lian, Lixiang et al. | IEEE | 2019


    Sparse Bayesian Learning Using Complex t-Prior for Massive Multi-User MIMO Channel Estimation

    Furuta, Kengo / Takahashi, Takumi / Ochiai, Hideki | IEEE | 2024


    User Association in Scalable Cell-Free Massive MIMO Systems

    D'Andrea, Carmen / Larsson, Erik G. | IEEE | 2020