Traffic prediction is essential for urban planning, congestion control, and emergency response. However, the presence of noisy and incomplete field measurements poses significant challenges to accurate forecasting. This study assesses the performance and limitations of traffic prediction models under noisy data conditions, introducing a novel incomplete sequence training approach to improve robustness with incomplete data. Our method is assessed on a comprehensive Las Vegas road network, revealing that the graph-based spatio-temporal transformer model consistently outperforms alternative approaches. These results underscore the model's ability to generate reliable predictions, thereby enhancing its practical applicability in real-world scenarios with messy data. This research emphasizes the critical role of robust training techniques in mitigating the adverse effects of noisy field measurements on traffic prediction accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Benchmarking/Limitations of Traffic Prediction with Noisy Field Measurements


    Beteiligte:


    Erscheinungsdatum :

    17.12.2024


    Format / Umfang :

    847865 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Noisy Bluetooth traffic data?

    Nantes, A | Online Contents | 2014


    Progress and limitations in magnetic field measurements

    Novkovski, N. | British Library Conference Proceedings | 2006


    Towards Benchmarking Microscopic Traffic Flow Models

    Brockfeld, Elmar / Kühne, Reinhart / Wagner, Peter | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2002

    Freier Zugriff


    Toward Benchmarking of Microscopic Traffic Flow Models

    Brockfeld, Elmar / Kühne, Reinhart D. / Skabardonis, Alexander et al. | Transportation Research Record | 2003