We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, exhibiting robustness to degradation with clutter. Of particular interest is the use of the features as variables in simple statistical models for the objects thus enabling likelihood based classification. Pre-training decision boundaries between classes, a necessary component of non-parametric techniques, are thus avoided. Class models are trained separately with no need to access data of other classes. Experimental results are presented for handwritten character recognition, classification of deformed BTEX symbols involving hundreds of classes, and side view car detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Part-based statistical models for object classification and detection


    Beteiligte:
    Bernstein, E.J. (Autor:in) / Amit, Y. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    465754 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Statistical Models of Object Interaction

    Morris, R. J. / Hogg, D. C. | British Library Online Contents | 2000


    Statistical Multi-Object Shape Models

    Lu, C. / Pizer, S. M. / Joshi, S. et al. | British Library Online Contents | 2007


    Partially Occluded Object Recognition Using Statistical Models

    Ying, Z. / Castanon, D. | British Library Online Contents | 2002


    Statistical Context Priming for Object Detection

    Torralba, A. / Sinha, P. / IEEE | British Library Conference Proceedings | 2001


    Statistical context priming for object detection

    Torralba, A. / Sinha, P. | IEEE | 2001