Scenario generation is one of the essential steps in scenario-based testing and, therefore, a significant part of the verification and validation of driver assistance functions and autonomous driving systems. However, the term scenario generation is used for many different methods, e.g., extraction of scenarios from naturalistic driving data or variation of scenario parameters. This survey aims to give a systematic overview of different approaches, establish different categories of scenario acquisition and generation, and show that each group of methods has typical input and output types. It shows that although the term is often used throughout literature, the evaluated methods use different inputs and the resulting scenarios differ in abstraction level and from a systematical point of view. Additionally, recent research and literature examples are given to underline this categorization.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    1001 Ways of Scenario Generation for Testing of Self-driving Cars: A Survey


    Beteiligte:
    Schutt, Barbara (Autor:in) / Ransiek, Joshua (Autor:in) / Braun, Thilo (Autor:in) / Sax, Eric (Autor:in)


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    916142 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Survey on Simulators for Testing Self-Driving Cars

    Kaur, Prabhjot / Taghavi, Samira / Tian, Zhaofeng et al. | IEEE | 2021


    Self-Driving Cars: A Survey

    Badue, Claudine / Guidolini, Rânik / Carneiro, Raphael Vivacqua et al. | ArXiv | 2019

    Freier Zugriff

    1001 dream cars you must drive before you die

    Heptinstall, Simon ;Mason, Nick | SLUB | 2012


    SELF DRIVING CARS

    KIM SI HYEONG / HAN YURIM / YEON HEE LEE et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Self-driving Cars

    Luntovskyy, Andriy / Guetter, Dietbert / Masiuk, Andrii | Springer Verlag | 2023