We present a model-based method for accurate extraction of pedestrian silhouettes from video sequences. Our approach is based on two assumptions, 1) there is a common appearance to all pedestrians, and 2) each individual looks like him/herself over a short amount of time. These assumptions allow us to learn pedestrian models that encompass both a pedestrian population appearance and the individual appearance variations. Using our models, we are able to produce pedestrian silhouettes that have fewer noise pixels and missing parts. We apply our silhouette extraction approach to the NIST gait data set and show that under the gait recognition task, our model-based silhouettes result in much higher recognition rates than silhouettes directly extracted from background subtraction, or any nonmodel-based smoothing schemes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning pedestrian models for silhouette refinement


    Beteiligte:
    Lee, (Autor:in) / Dalley, (Autor:in) / Tieu, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    337365 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning Pedestrian Models for Silhouette Refinement

    Lee, L. / Dalley, G. / Tieu, K. et al. | British Library Conference Proceedings | 2003


    Pedestrian Categorization Using Heterogenous HOG Cascade and Motion Difference Silhouette

    Kim, H. / Takahashi, T. / Kamijo, S. | British Library Online Contents | 2013


    Refinement of human silhouette segmentation in omni-directional indoor videos

    Delibasis, K. K. / Plagianakos, V. P. / Maglogiannis, I. | British Library Online Contents | 2014



    Stochastic Refinement of the Visual Hull to Satisfy Photometric and Silhouette Consistency Constraints

    Isidoro, J. / Sclaroff, S. / IEEE | British Library Conference Proceedings | 2003