The field of motion prediction for automated driving has seen tremendous progress recently, bearing ever-more mighty neural network architectures. Leveraging these powerful models bears great potential for the closely related planning task. In this work, we show that state-of-the-art prediction models can be converted into goal-directed planners. To this end, we propose a novel goal-conditioning method. Our key insight is that conditioning prediction on a navigation goal at the behaviour level outperforms other widely adopted methods, with the additional benefit of increased model interpretability. Moreover, our Method can be applied at inference time only. Hence, no ground-truth navigation command is required during training. We evaluate our method on a large open-source dataset and show promising performance in a comprehensive benchmark. Code is available under https://mh0797.github.io/gc-pgp/.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    From Prediction to Planning With Goal Conditioned Lane Graph Traversals


    Beteiligte:
    Hallgarten, Marcel (Autor:in) / Stoll, Martin (Autor:in) / Zell, Andreas (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    2686546 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A visual display aid for planning rover traversals

    BERNARD, HERBERT / ELLIS, STEPHEN | AIAA | 1992


    A visual display aid for planning rover traversals

    Bernard, Herbert F. / Ellis, Stephen R. | NTRS | 1992


    Hierarchical Planning Through Goal-Conditioned Offline Reinforcement Learning

    HUANG MINGLEI / ZHAN WEI / TOMIZUKA MASAYOSHI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Collier, Michael R. / Stubbs, Timothy J. / Hills, H. Kent et al. | NTRS | 2009


    MOTION GRAPH CONSTRUCTION AND LANE LEVEL ROUTE PLANNING

    LIU SHIH-YUAN | Europäisches Patentamt | 2021

    Freier Zugriff