Simulation tools are frequently used to analyze vehicular networks. However, these tools are not ready yet to model the world in the necessary level of detail for Collective Perception. The network load generated by the Collective Perception Service highly depends on the sender's sensors, which are modeled insufficiently by current vehicular network simulators. This paper presents an Environment Model extension to Artery, a popular simulation framework for the ETSI C-ITS communication stack. It enables sensor-equipped vehicles to perceive objects from their perspective individually to improve the realism of perception. Furthermore, it adds new sensors that produce synthetic object data for detected objects based on the characteristics of various automotive sensors. A performance evaluation shows that the computational overhead for the extension is limited, so it is suitable even for large-scale simulation studies using Artery.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Improving Realism of Perception in Artery


    Beteiligte:
    Willecke, Alexander (Autor:in) / Yazici, Cengiz (Autor:in) / Garlichs, Keno (Autor:in) / Wolf, Lars C. (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    1242616 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improving Orbital Uncertainty Realism Through Covariance Determination in GEO

    Cano, Alejandro / Pastor, Alejandro / Fernández, Sergio et al. | Springer Verlag | 2022

    Freier Zugriff



    Improving Orbital Uncertainty Realism Through Coyariance Determination in GEO

    Cano, Alejandro | British Library Conference Proceedings | 2021