The analysis on the test data is an important way to obtain the flutter characteristics of aircraft. Because of the low quality of the measured signal, the preprocessing is indispensable to improve the accuracy of flutter data analysis. In this paper, the morphological filtering is introduced into the field of flutter structure data processing. The theory of mathematical morphology is given, and the effectiveness of morphological filtering depending on the different operation types and structural elements are discussed. After that, the typical flutter boundary prediction (FBP) method is used to verify the validity and feasibility of the morphological preprocessing method through the numerical simulations, as well as the flight flutter test data. The results is shown that the morphological filtering can enhance Signal to Noise Rate (SNR) of the measured structural response from the physical test in terms of improving the prediction accuracy in actually engineering applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Preprocessing Method for Flutter Signals Based on Morphological Filtering


    Beteiligte:
    Hua, Zheng (Autor:in) / Junhao, Liu (Autor:in) / Shiqiang, Duan (Autor:in)


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    7469740 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Signal preprocessing and parameter estimation for aircraft flight flutter test

    Zeng, Qinghua / Zhang, Lingmi / Zhang, Chunning | Tema Archiv | 1993


    Robust Preprocessing for Kalman Filtering of Glint Noise

    Hewer, G. A. / Martin, R. D. / Zeh, Judith | IEEE | 1987


    Adaptive filtering image preprocessing for smart FPA technology [2474-05]

    Brooks, G. W. / SPIE | British Library Conference Proceedings | 1995



    A Novel Classification Method for Flutter Signals Based on the CNN and STFT

    Shiqiang Duan / Hua Zheng / Junhao Liu | DOAJ | 2019

    Freier Zugriff