We propose a framework for detecting user driving style preference with multimodal signals, to adapt autonomous vehicle driving style to drivers’ preferences in an automatic manner. Mismatch between the automated vehicle driving style and the driver’s preference can lead to more frequent takeovers or even disabling the automation features. We collected multi-modal data from 36 human participants on a driving simulator, including eye gaze, steering grip force, driving maneuvers, brake and throttle pedal inputs as well as foot distance from pedals, pupil diameter, galvanic skin response, heart rate, and situational drive context. Based on the data, we constructed a data-driven framework using convolutional Siamese neural networks (CSNNs) to identify preferred driving styles. The model performance has significant improvement compared to that in the existing literature. In addition, we demonstrated that the proposed framework can improve model performance without network training process using data from target users. This result validates the potential of online model adaption with continued driver-system interaction. We also perform an ablation study on sensing modalities and present the importance of each data channel.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learn-able Evolution Convolutional Siamese Neural Network for Adaptive Driving Style Preference Prediction


    Beteiligte:
    Koochaki, Fatemeh (Autor:in) / Zheng, Zhaobo K. (Autor:in) / Akash, Kumar (Autor:in) / Misu, Teruhisa (Autor:in)


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    5774428 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ADAPTIVE DRIVING STYLE

    ZHENG ZHAOBO K / MISU TERUHISA / AKASH KUMAR | Europäisches Patentamt | 2024

    Freier Zugriff

    Adaptive driving style

    ZHENG ZHAOBO K / MISU TERUHISA / AKASH KUMAR | Europäisches Patentamt | 2025

    Freier Zugriff

    Driving Style Representation via Convolutional Neural Networks: A Contrastive Learning Approach

    Pennino, Federico / Sette, Davide / Attisano, David et al. | IEEE | 2024


    Identification of Adaptive Driving Style Preference through Implicit Inputs in SAE L2 Vehicles

    Zheng, Zhaobo K. / Akash, Kumar / Misu, Teruhisa et al. | ArXiv | 2022

    Freier Zugriff