Ahstract-A new loss function is proposed for training complex-valued neural networks that reconstruct radio signals. Given a complex time series, this method incorporates loss from spectrograms with multiple aspect ratios, cross-correlation loss, and loss from amplitude envelopes in the time & frequency domains. When training a neural network, an optimizer will observe batch loss and backpropagate this value through the network to determine how to update the model parameters. The proposed loss function is robust to typical radio impairments and co-channel interference that would explode a naive mean-square error approach. This robust loss enables higher quality steps along the loss surface which in turn enables training of models specifically designed for impaired radio input. Loss versus channel impairment is shown in comparison to mean-square error for an ensemble of common channel effects. A PyTorch implementation is available at https://github.com/the-aerospace-corporation/glaucus.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Complex-Valued Radio Signal Loss for Neural Networks


    Beteiligte:
    Logue, Kyle (Autor:in)


    Erscheinungsdatum :

    04.03.2023


    Format / Umfang :

    604061 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improvements of the traffic signal control by complex-valued Hopfield networks

    Nishikawa, I. / Iritani, T. / Sakakibara, K. | Tema Archiv | 2007


    Complex-Valued Signal Capsule Network for Automatic Modulation Classification

    Yang, Shuyuan / Feng, Zhixi / Wang, Nengguo et al. | Springer Verlag | 2022