The problem of missing samples in road traffic data undermines the performance of intelligent transportation applications. This paper proposes a data-driven imputation method that exploits the spatial and temporal relationships existing between the traffic flows of multiple road segments that are correlated with each other. The K-means clustering technique is used to group together road segments with similar traffic flow patterns. Next, a deep-learning model based on stacked denoising autoencoders is constructed for each group of road segments to extract their spatial-temporal relationships and use them for imputing the missing data points. Experiments conducted with real traffic data demonstrate that the imputation accuracy of the proposed method is robust under different missing data rates.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A clustering-based approach for data-driven imputation of missing traffic data


    Beteiligte:


    Erscheinungsdatum :

    01.07.2016


    Format / Umfang :

    395683 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | Wiley | 2014

    Freier Zugriff

    Missing traffic data: comparison of imputation methods

    Li, Yuebiao / Li, Zhiheng / Li, Li | IET | 2014

    Freier Zugriff

    A Comprehensive Survey on Traffic Missing Data Imputation

    Zhang, Yimei / Kong, Xiangjie / Zhou, Wenfeng et al. | IEEE | 2024


    Imputation of Missing Traffic Data during Holiday Periods

    Liu, Zhaobin / Sharma, Satish / Datla, Sandeep | Taylor & Francis Verlag | 2008