Current state-of-the-art object detection algorithms still suffer the problem of imbalanced distribution of training data over object classes and background. Recent work introduced a new loss function called focal loss to mitigate this problem, but at the cost of an additional hyperparameter. Manually tuning this hyperparameter for each training task is highly time-consuming. With automated focal loss we introduce a new loss function which substitutes this hyperparameter by a parameter that is automatically adapted during the training progress and controls the amount of focusing on hard training examples. We show on the COCO benchmark that this leads to an up to 30% faster training convergence. We further introduced a focal regression loss which on the more challenging task of 3D vehicle detection outperforms other loss functions by up to 1.8 AOS and can be used as a value range independent metric for regression.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Focal Loss for Image based Object Detection


    Beteiligte:
    Weber, Michael (Autor:in) / Furst, Michael (Autor:in) / Zollner, J. Marius (Autor:in)


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    345785 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AUTOMATED FOCAL LOSS FOR IMAGE BASED OBJECT DETECTION

    Weber, Michael / Fürst, Michael / Zöllner, J. Marius | British Library Conference Proceedings | 2020



    FOD Detection using DenseNet with Focal Loss of Object Samples for Airport Runway

    Liu, Yunkai / Li, Yuanxiang / Liu, Jiawei et al. | IEEE | 2018


    Astronomical Image Analyzer with Automated Object Detection

    Orellana, Sonny / Nguyen, Richard / Boussalis, Helen et al. | AIAA | 2005


    Dual Focal Loss for Calibration

    Tao, Linwei / Dong, Minjing / Xu, Chang | ArXiv | 2023

    Freier Zugriff