Reliable Traffic State Estimation (TSE) is an important precursor to developing sophisticated traffic controls for intelligent transportation systems (ITS). Historically, TSE is calculated using stationary sensors with occasional vehicle probe data as supplementary data. However, even with recent developments that apply machine learning to TSE calculations, the literature reports having to fuse probe data with stationary data or focus solely on freeways where the penetration is greater. This work proposes and analyzes an Ordinal Regression model developed using XGBoost to compute TSE exclusively from probe data that can be used for real-time model predictive control on signalized corridors. Our results show our model to have an mean absolute error of less than half a class and show promising preliminary results in a real-world control experiment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Machine Learning Method for Real-Time Traffic State Estimation from Probe Vehicle Data


    Beteiligte:


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1637466 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Probe vehicle sampling for real-time traffic data collection

    Wang Li, / Wang Chuanjiu, / Shen Xiaorong, et al. | IEEE | 2005


    Probe Vehicle Sampling for Real-Time Traffic Data Collection

    Wang, L. / Wang, C. / Shen, X. et al. | British Library Conference Proceedings | 2005


    A Machine Learning Method for Predicting Traffic Signal Timing from Probe Vehicle Data

    Ugirumurera, Juliette / Severino, Joseph / Bensen, Erik A. et al. | ArXiv | 2023

    Freier Zugriff

    Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term Travel-Time Prediction on a Freeway

    Nanthawichit, Chumchoke / Nakatsuji, Takashi / Suzuki, Hironori | Transportation Research Record | 2003