A superimposed (arithmetically added) Pilot (SiP) sequence based channel estimation method for beamforming assisted multi-antenna High Altitude Platform (HAP) land mobile radio communication systems is proposed, which exploits the prior available information of users' spatial location, density of users, and beam-width of HAP directional antenna. A thorough characterization of HAP sparse multipath radio propagation channels' is presented in first part of the paper, where mathematical relationship of HAP antenna beam-width with channel's delay span and optimal length of SiP base sequence are presented. Further, a location information aided and low- power SiP sequence based Stage-wise Orthogonal Match Pursuit (StOMP) algorithm is proposed for estimation of channels from single-antenna user terminals to beamforming assisted large scale multiple-antenna HAP. A thorough analysis on the basis of Normalized Channel Mean Square Error (NCMSE) and Bit Error Rate (BER) performance of proposed method is presented; where the effect of channels' sparsity level, Pilot-to-Information power Ratio (PIR), beam-width of HAP's directional antenna, amount of HAP antenna elements, density of interfering users, and spatial location of active user terminal are thoroughly studied. A comparison of the proposed method with a notable reference technique available in the literature is also presented.
Location-Aware and Superimposed-Pilot Based Channel Estimation of Sparse HAP Radio Communication Channels
01.06.2017
612751 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Pilot design for compressed sensing based OFDM sparse channel estimation
British Library Online Contents | 2018
|