We propose a methodology for reconstructing large-scale architectural scenes from low-altitude aerial images, in an efficient, accurate and fully automatic way. Towards this goal, we have developed an area-based segmentation technique, called colored watershed, that is particularly suited to segmenting objects with homogeneous photometric properties, which are typical of such scenes. This technique is now being combined with a dense-stereo method biased towards depth discontinuities near the edges of the segmented objects. In a final step, parametric models of these segmented objects are instantiated and directly adjusted to the multiple images available to generate a mixed surface and elevation map for each scene.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards automatic 3D reconstruction of urban scenes from low-altitude aerial images


    Beteiligte:
    Huguet, A.B. (Autor:in) / Carceroni, R.L. (Autor:in) / Araujo, A.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    828005 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Towards Automatic 3D Reconstruction of Urban Scenes from Low-Altitude Aerial Images

    Huguet, A. / Carceroni, R. / Araujo, A. et al. | British Library Conference Proceedings | 2003


    3-D Reconstruction of Urban Scenes from Aerial Stereo Imagery: A Focusing Strategy

    Baillard, C. / Maitre, H. | British Library Online Contents | 1999


    3-D Reconstruction of Urban Scenes from Image Sequences

    Faugeras, O. / Robert, L. / Laveau, S. et al. | British Library Online Contents | 1998


    Multi-rotor high-altitude automatic spraying unmanned aerial vehicle

    WEN WEIGUO / ZHANG WEN / LUO XU | Europäisches Patentamt | 2024

    Freier Zugriff

    Towards Pragmatic Semantic Image Synthesis for Urban Scenes

    Eskandar, George / Guo, Diandian / Guirguis, Karim et al. | IEEE | 2023