A real-valued genetic algorithm is proposed to the optimization problem with continuous variables. It is composed of a simple and general-purpose dynamic scaled fitness and selection operator, real-valued crossover operator, mutation operators and adaptive probabilities for these operators. The proposed algorithm is tested by two generally used functions and is applied to the training of a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A new evolutionary computation method


    Beteiligte:
    Wei Yan (Autor:in) / Zhaoda Zhu (Autor:in)


    Erscheinungsdatum :

    01.01.1997


    Format / Umfang :

    393387 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An New Evolutionary Computation Method

    Yan, W. / Zhu, Z. / IEEE | British Library Conference Proceedings | 1997


    Intelligent Path Planning With Evolutionary Computation

    Parry, A. / Ordonez, R. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2010


    Architecture for high-speed evolutionary computation

    Yoshikawa, Masaya | Online Contents | 2004


    Evolutionary computation technologies for space systems

    Terrile, R.J. / Adami, C. / Aghazarian, H. et al. | Tema Archiv | 2005


    3D airspace design by evolutionary computation

    Delahaye, Daniel / Puechmorel, Stephane | IEEE | 2008