It is common to see difficult feature extraction in heavy-duty vehicles fault diagnosis due to strong interference. Blind signal separation(BSS) technology proves to be effective to extract the principal component out of the multi-sources signals. Therefore, it is used to extract the fault information for heavy-duty vehicle in this paper. A bispectrum of the data after BSS is obtained and scanned in frequency field. The result indicates that BSS can reduce the interference out of the engine vibration and extract the wanted fault features more effectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Applying blind signal separation theory to diagnose heavy-duty vehicle


    Beteiligte:
    Huimin Zhao (Autor:in) / Jianmin Mei (Autor:in) / Hong Shen (Autor:in) / Qingle Yang (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    856735 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Heavy-duty Diesel Diagnose

    Subke,P. / Softing Automotive Electronics,DE | Kraftfahrwesen | 2013


    On-Board-Diagnose fuer heavy-duty diesel

    Subke,P. / Softing,DE | Kraftfahrwesen | 2011


    Entwicklungsstrategien für die Heavy-Duty-On-Board-Diagnose

    Predelli, Oliver / Jungblut, Thomas / Habekost, Margit | Tema Archiv | 2006


    Heavy duty vehicle blind area monitoring and early warning system

    FENG MENGQI / FEI MINGHAO / CAI XINCHENG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    HEAVY-DUTY VEHICLE

    HÄFELE HORST | Europäisches Patentamt | 2022

    Freier Zugriff