Remote sensing has become an important resource for numerous areas of application. Efficient methods for analysis and visualization of this data are needed as new satellites with improved capabilities are planned and constructed. This paper describes numerical and imaging techniques that are based on a statistically robust singular value decomposition (RSVD). This algorithm characterizes the main features of remotely sensed data without the distorting and masking effects due to the presence of relatively rare subpopulations. Ancillary numerical tools associated with this algorithm can be used for the identification and visualization of the rare subpopulations. Problems discussed include a brief description of RSVD, storage of its output, image processing, and modifications to allow efficient processing of high-dimensional remote sensing data. Examples of the application of these methods to a SPOT data set are presented.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust image processing for remote sensing data


    Beteiligte:
    Ammann, L.P. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    463114 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Image Processing for Remote Sensing Data

    Ammann, L. P. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Remote sensing image data acquisition and processing system

    MA HAO / LI DONG / WANG PING | Europäisches Patentamt | 2024

    Freier Zugriff

    Remote Sensing Image Enhancement via Robust Guided Filtering

    Huseyin Kaplan, Nur / Erer, Isin | IEEE | 2019


    Processing of remote sensing data

    Mcmurtry, G. J. / Petersen, G. W. / Chung, S. J. et al. | NTRS | 1973


    "Image Processing Software for Remote Sensing Applications"

    Whitley, J. P. | British Library Online Contents | 1992