Current urban traffic congestion costs are increasing on account of the population growth of cities and increasing numbers of vehicles. Many cities are adopting intelligent transportation systems (ITSs) to improve traffic efficiency. ITSs can be used for monitoring traffic congestion using detectors, such as calculating an estimated time of arrival or suggesting a detour route. In this paper, we propose an urban traffic flow prediction system using a multifactor pattern recognition model, which combines Gaussian mixture model clustering with an artificial neural network. This system forecasts traffic flow by combining road geographical factors and environmental factors with traffic flow properties from ITS detectors. Experimental results demonstrate that the proposed model produces more reliable predictions compared with existing methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Urban Traffic Flow Prediction System Using a Multifactor Pattern Recognition Model


    Beteiligte:
    Oh, Se-do (Autor:in) / Kim, Young-jin (Autor:in) / Hong, Ji-sun (Autor:in)


    Erscheinungsdatum :

    01.10.2015


    Format / Umfang :

    1560105 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    PREDICTION SYSTEM AND METHOD OF URBAN TRAFFIC FLOW USING MULTIFACTOR PATTERN RECOGNITION MODEL

    KIM YOUNG JIN / OH SE DO / HONG JI SUN | Europäisches Patentamt | 2016

    Freier Zugriff


    Traffic flow prediction method, traffic flow prediction system and urban traffic signal controller control method

    YAN JUN / LIAO FUKUN / ZHANG YUANG | Europäisches Patentamt | 2023

    Freier Zugriff

    Multifactor feature extraction for human movement recognition

    Peng, B. / Qian, G. / Ma, Y. et al. | British Library Online Contents | 2011