This paper proposes a learning-based predictive control technique for self-driving hybrid electric vehicle (HEV). This approach is a hierarchical framework. The higher-level is a human-like driver model, which is applied to predict accelerations in the car following situation to replicate a human driver’s demonstrations. The lower-level is a reinforcement learning (RL)-based controller, which enforces the battery and fuel consumption constraints to improve energy efficiency of HEV. In addition, we present induced matrix norm (IMN) to handle cases that the training data cannot provide sufficient information on how to operate in current driving situation. Simulation results illustrate that the proposed method can reproduce human driver’s driving style and promote fuel economy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning-Based Predictive Control for Autonomous Electrified Vehicles


    Beteiligte:
    Liu, Teng (Autor:in) / Yang, Chao (Autor:in) / Hu, Chuanzheng (Autor:in) / Wang, Hong (Autor:in) / Li, Li (Autor:in) / Cao, Dongpu (Autor:in) / Wang, Fei-Yue (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    1902881 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REINFORCEMENT LEARNING-BASED PREDICTIVE CONTROL FOR AUTONOMOUS ELECTRIFIED VEHICLES

    Liu, Teng / Yang, Chao / Hu, Chuanzheng et al. | British Library Conference Proceedings | 2018




    Magnetically Actuated Hybrid Brake for Autonomous, Electrified Vehicles

    Guckes, Lennart | DataCite | 2023

    Freier Zugriff

    Intelligent Control Switching for Autonomous Vehicles based on Reinforcement Learning*

    Atoui, Hussam / Sename, Olivier / Milanes, Vicente et al. | IEEE | 2022