This paper proposes a prediction method for vehicle-to-pedestrian collision avoidance, which learns and then predicts pedestrian behaviors as their motion instances are being observed. During learning, known trajectories are clustered to form Motion Patterns (MP), which become knowledge a priori to a multi-level prediction model that predicts long-term or short-term pedestrian behaviors. Simulation results show that it works well in a complex structured environment and the prediction is consistent with actual behaviors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian Behavior Prediction based on Motion Patterns for Vehicle-to-Pedestrian Collision Avoidance


    Beteiligte:
    Chen, Zhuo (Autor:in) / Ngai, D. C. K. (Autor:in) / Yung, N. H. C. (Autor:in)


    Erscheinungsdatum :

    01.10.2008


    Format / Umfang :

    269656 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vehicle collision avoidance system with enhanced pedestrian avoidance

    EDO-ROS MANUEL | Europäisches Patentamt | 2018

    Freier Zugriff

    VEHICLE COLLISION AVOIDANCE SYSTEM WITH ENHANCED PEDESTRIAN AVOIDANCE

    EDO ROS MANUEL | Europäisches Patentamt | 2018

    Freier Zugriff

    VEHICLE COLLISION AVOIDANCE SYSTEM WITH ENHANCED PEDESTRIAN AVOIDANCE

    EDO-ROS MANEL | Europäisches Patentamt | 2016

    Freier Zugriff

    Vehicle collision avoidance system with enhanced pedestrian avoidance

    EDO ROS MANUEL | Europäisches Patentamt | 2021

    Freier Zugriff