This paper deals with a dial-a-ride problem with time windows applied to a demand responsive transport service. An evolutionary approach as well as new original representation and variation operators are proposed and detailed. Such mechanisms are used with three state-of-the-art multi-objective evolutionary algorithms: NSGA-II, IBEA and SPEA2. After introducing the general problem, the solution encoding and the algorithm mechanisms are depicted. The approach is assessed by applying the algorithms to both random and realistic dial-a-ride instances. Then a statistical comparison is provided in order to highlight the most suited evolutionary algorithms to optimize real-life transportation problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On optimizing a demand responsive transport with an evolutionary multi-objective approach


    Beteiligte:
    Chevrier, R (Autor:in) / Liefooghe, A (Autor:in) / Jourdan, L (Autor:in) / Dhaenens, C (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    307064 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The demand responsive transport services: Italian approach

    Bellini, C. / Dellepiane, G. / Quaglierini, C. et al. | British Library Conference Proceedings | 2003


    Optimizing a demand-responsive feeder system for low-demand areas

    Sartori-Vieira, Fábio / Sörensen, Kenneth / Vansteenwegen, Pieter | TIBKAT | 2022

    Freier Zugriff

    Optimizing AGT Applications through Demand-Responsive Control Systems

    Lott, J. S. / Nishinaga, E. / Transportation & Development Institute (American Society of Civil Engineers) | British Library Conference Proceedings | 2005


    Optimizing Lightweight and Rollover Safety of Bus Superstructure with Multi-Objective Evolutionary Algorithm

    Hong, Han Chi / Hong, Jing Yan / D’Apolito, Luigi et al. | Springer Verlag | 2024