Traffic data analysis and mining are elemental functions of Intelligent Transportation Systems. In recent year, tremendous sensors are deployed in order to collect big data, and equipment maintenance costs a lot. With the development of deep learning, especially especially Generative Adversarial Networks, we can generate realistic big artificial traffic flow data and use small real traffic data and synthesized traffic data in traffic data mining tasks. In this paper, we focus on discovering the semantics embedded in latent codes which are fed into Generative Adversarial Networks, and propose to use the interpolation of semantic latent code to generate semantic manipulation of traffic flow. We evaluate our approach using the publicly available data from Caltrans Performance Measurements Systems (PeMS), and experimental results show the the effectiveness of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Flow Synthesis Using Generative Adversarial Networks via Semantic Latent Codes Manipulation


    Beteiligte:
    Chen, Yuanyuan (Autor:in) / Lv, Yisheng (Autor:in) / Zhu, Fenghua (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    575033 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks

    Chen, Yuanyuan / Lv, Yisheng / Wang, Fei-Yue | IEEE | 2020


    Enhancing Traffic Scene Predictions with Generative Adversarial Networks

    Konig, Peter / Aigner, Sandra / Korner, Marco | IEEE | 2019



    Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets

    Chen, Mu-Yen / Chiang, Hsiu-Sen / Huang, Wei-Kai | IEEE | 2022


    Circuit Synthesis Using Generative Adversarial Networks (GANSs)

    Guo, Tinghao / Herber, Daniel / Allison, James T. | TIBKAT | 2019