In conventional passive and active sonar system, target amplitude information (AI) at the output of the signal processor is used only to declare detections and provide measurements. We show that the AI can be used in passive sonar system, with or without frequency measurements, in the estimation process itself to enhance the performance in the presence of clutter where the target-originated measurements cannot be identified with certainty, i.e., for "low observable" or "dim" (low signal-to-noise ratio (SNR)) targets. A probabilistic data association (PDA) based maximum likelihood (ML) estimator for target motion analysis (TMA) that uses amplitude information is derived. A track formation algorithm and the Cramer-Rao lower bound (CRLB) in the presence of false measurements, which is met by the estimator even under low SNR conditions, are also given. The CRLB is met by the proposed estimator even at 6 dB in a cell (which corresponds to 0 dB for 1 Hz bandwidth in the case of a 0.25 Hz frequency cell) whereas the estimator without AI works only down to 9 dB. Results demonstrate improved accuracy and superior global convergence when compared with the estimator without AI. The same methodology can be used for bistatic radar.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low observable target motion analysis using amplitude information


    Beteiligte:
    Kirubarajan, T. (Autor:in) / Bar-Shalom, Y. (Autor:in)


    Erscheinungsdatum :

    01.10.1996


    Format / Umfang :

    2023065 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch