For testing and validation of automated driving functions, simulations are absolutely essential to manage the required test effort. Therefore, the simulation models need to be modeled adequately in order to use the simulation results for virtual validation. As the required accuracy in virtual environment models is not clearly defined, this contribution investigates and quantifies accuracy requirements for the static domain of virtual environment models. By the use of an appropriate sensitivity analysis and a unique metric for the evaluation of simulation results suitable parameters are identified and statistically analyzed for validity and sensitivity assessment for a highway scenario. The results reveal that influences on the creation of virtual environment descriptions for automated driving could be derived and used for defining requirements in the generation and updating of virtual test fields.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simulation-Based Parameter Identification for Accuracy Definitions in Virtual Environment Models for Validation of Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    254794 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SIMULATION-BASED PARAMETER IDENTIFICATION FOR ACCURACY DEFINITIONS IN VIRTUAL ENVIRONMENT MODELS FOR VALIDATION OF AUTOMATED DRIVING

    Stadler, Christoph / Rauner, Kevin / German, Reinhard et al. | British Library Conference Proceedings | 2021



    Virtual Validation Method for Automated Driving Vehicles Based on Traffic Accident

    Zhang, Shan / Shi, Juan / Guo, Kuiyuan et al. | ASCE | 2020


    Scenario Identification for Validation of Automated Driving Functions

    Elrofai, Hala / Worm, Daniël / Op den Camp, Olaf | Springer Verlag | 2016


    Virtual Validation Method for Automated Driving Vehicles Based on Traffic Accident

    Zhang, Shan / Shi, Juan / Guo, Kuiyuan et al. | TIBKAT | 2020