Particle Filter can be used to fault diagnosis on systems with nonlinearities or non-Gaussian noise as a state estimation algorithm. Due to its characteristics to handle with discrete and continuous states simultaneously, particle filter has attracted much more attention to fault diagnosis on hybrid systems. Rao-Blackwellized Particle Filter (RBPF) is one of the efficient methods to this application without the limitation of high dimensional state spaces. However, in the implementation of particle filter, a resampling scheme is often used to mitigate the degeneracy phenomenon; meanwhile it comes out another particle deprivation problem and diversity decreased. In order to overcome this inherent problem of particle filter, an evolutionary Genetic Algorithm (EGA) integrated with RBPF is proposed, and applied to diagnose failures in hybrid train sensor system. Simulations demonstrate that the improved algorithm can significantly increase particle diversity and reduce the error rate of fault diagnosis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault diagnosis of train sensors based on evolutionary genetic Particle Filter


    Beteiligte:
    Kong, Weijie (Autor:in) / Zheng, Wei (Autor:in)


    Erscheinungsdatum :

    01.08.2013


    Format / Umfang :

    203122 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault diagnosis device, train control system and train

    CHEN JUNBO / LIU KEAN / GAN WEIWEI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Train fault diagnosis method and device and train display

    LI XIONGHUI / JIANG XUEZHAI / ZHANG GUANGQIANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Particle Filter Fault Diagnosis of Highly Automated Aircraft

    Kwao, Vincent / Raptis, Ioannis | AIAA | 2024