Today's vehicles are sensor-rich but computation-poor. To better assist drivers, current vehicles have a large number of diverse sensors, for instance, the 2017 Ford GT has over 50 built-in cameras and sensors that can determine speed, location, humidity, occupancy, mechanical positioning, and a wealth of other data. However, modern vehicles have little general-purpose computing capacity due to cost, maintenance, and survivability concerns. For instance, vehicle manufacturers aim for vehicles to last for 20 years, and any general-purpose computing platforms would become obsolete or need maintenance many times during that lifespan.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poster Abstract: Reducing Tail Response Time of Vehicular Applications


    Beteiligte:
    Lee, Hyunjong (Autor:in) / Flinn, Jason (Autor:in)


    Erscheinungsdatum :

    01.10.2016


    Format / Umfang :

    196092 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Poster abstract: En route towards trace-based simulation of vehicular mobility

    Ketabi, Roozbeh / Alipour, Babak / Helmy, Ahmed | IEEE | 2017





    Poster: Drone Assisted Vehicular Communication (DAVN)

    Tahir, Muhammad Naeem / Katz, Marcos / Pouttu, Ari | IEEE | 2024