Variational autoencoders (VAEs) have been used in prior works for generating and blending levels from different games. To add controllability to these models, conditional VAEs (CVAEs) were recently shown capable of generating output that can be modified using labels specifying desired content, albeit working with segments of levels and platformers exclusively. We expand these works by using CVAEs for generating whole platformer and dungeon levels, and blending levels across these genres. We show that CVAEs can reliably control door placement in dungeons and progression direction in platformer levels. Thus, by using appropriate labels, our approach can generate whole dungeons and platformer levels of interconnected rooms and segments respectively as well as levels that blend dungeons and platformers. We demonstrate our approach using The Legend of Zelda, Metroid, Mega Man and Lode Runner.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dungeon and Platformer Level Blending and Generation using Conditional VAEs


    Beteiligte:
    Sarkar, Anurag (Autor:in) / Cooper, Seth (Autor:in)


    Erscheinungsdatum :

    17.08.2021


    Format / Umfang :

    1184403 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    f-VAEs: Improve VAEs with Conditional Flows

    Su, Jianlin / Wu, Guang | ArXiv | 2018

    Freier Zugriff

    Increasing the Generalisaton Capacity of Conditional VAEs

    Klushyn, Alexej / Chen, Nutan / Cseke, Botond et al. | British Library Conference Proceedings | 2019


    Game Level Clustering and Generation using Gaussian Mixture VAEs

    Yang, Zhihan / Sarkar, Anurag / Cooper, Seth | ArXiv | 2020

    Freier Zugriff

    Character Controllers Using Motion VAEs

    Ling, Hung Yu / Zinno, Fabio / Cheng, George et al. | ArXiv | 2021

    Freier Zugriff

    LEARNING HIERARCHICAL PRIORS IN VAES

    Klushyn, Alexej / Chen, Nutan / Kurle, Richard et al. | TIBKAT | 2020