This paper presents a technique for the online adaptive weighted fusion algorithm for multi-sensor tracking. A suitable method for estimating measurement noise variance is developed, and the formulas of fuzzy logic-based fusion and parallel adaptive tracking are derived. The algorithm consists of three steps: (i) estimation of the sensor's measurement noise variance using the statistical theory; (ii) adjustment of the fused sensor's weight coefficient according to the sensor's noise variance change; (iii) prediction of the target position using the "current" statistical model and Kalman filter method. The algorithm is able to adapt itself to the changes of sensor's noise, and its estimation error is of least mean square. Computer simulation results are presented to demonstrate the robust performance of this algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A robust fusion algorithm for multi-sensor tracking


    Beteiligte:
    Shiqiang Hu, (Autor:in) / Zhongliang Jing, (Autor:in) / Leung, H. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    340343 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Robust Fusion Algorithm for Multi-Sensor Tracking

    Hu, S. / Jing, Z. / Leung, H. et al. | British Library Conference Proceedings | 2003


    Tightly integrated sensor fusion for robust visual tracking

    Klein, G. S. / Drummond, T. W. | British Library Online Contents | 2004


    A multi-sensor fusion and object tracking algorithm for self-driving vehicles

    Yi, Chunlei / Zhang, Kunfan / Peng, Nengling | SAGE Publications | 2019


    Multi-scan sensor fusion for object tracking

    JIA BIN / WANG XIAOHUI | Europäisches Patentamt | 2024

    Freier Zugriff

    Multi-Scan Sensor Fusion for Object Tracking

    JIA BIN / WANG XIAOHUI | Europäisches Patentamt | 2023

    Freier Zugriff