Flight parameter data is one of the objective and scientific bases to describe the flight process. Its error will significantly affect the results of subsequent data processing and analysis. Collecting effective training aircraft flight data is critical for flight safety, pilot training, flight performance analysis, fault diagnosis and maintenance, and data-driven decision making. Because flight parameter data is a typical multidimensional time series data, there are correlations among different dimensions of multidimensional time series data, and multiple dimensions may change cooperatively, resulting in inter-dimensional correlation anomalies. Therefore, anomalies cannot be accurately detected by considering only single-dimensional time series information. This paper proposes a monitoring method of flight parameter anomaly data based on time sequence consistency. Through multiple outlier detection of one-dimensional flight key parameters, one-dimensional outlier data is marked and the time stamp of multi-dimensional flight key parameter outlier data can be obtained after intersection, which can accurately detect abnormal data in flight parameter data files.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Flight parameter anomaly data detection based on timing consistency approach


    Beteiligte:
    Wang, Yue (Autor:in) / Du, Dong (Autor:in) / Mou, Rui (Autor:in) / Hou, Xiaoxue (Autor:in) / Qian, Jide (Autor:in)


    Erscheinungsdatum :

    15.09.2023


    Format / Umfang :

    2872003 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Proximity landing stage anomaly detection method based on flight data

    GONG SHULI / DING MENG / CAO LI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Imbalanced Flight Test Sensor Temporal Data Anomaly Detection

    Zhang, Da / Yang, Hao / Gao, Junyu et al. | IEEE | 2025


    Transformer-Based Method for Unsupervised Anomaly Detection of Flight Data

    Yu, Hao / Wu, Honglan / Sun, Youchao et al. | Springer Verlag | 2024


    Flight target anomaly detection method based on multi-source data fusion

    YAN KE / ZHANG BEN / TIAN LING et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Exploiting Consistency Among Heterogeneous Sensors for Vehicle Anomaly Detection

    Ganesan, Arun / Rao, Jayanthi / Shin, Kang | SAE Technical Papers | 2017