The advance in image/video editing techniques has facilitated people in synthesizing realistic images/videos that may hard to be distinguished from real ones by visual examination. This poses a problem: how to differentiate real images/videos from doctored ones? This is a serious problem because some legal issues may occur if there is no reliable way for doctored image/video detection when human inspection fails. Digital watermarking cannot solve this problem completely. We propose an approach that computes the response functions of the camera by selecting appropriate patches in different ways. An image may be doctored if the response functions are abnormal or inconsistent to each other. The normality of the response functions is classified by a trained support vector machine (SVM). Experiments show that our method is effective for high-contrast images with many textureless edges.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detecting doctored images using camera response normality and consistency


    Beteiligte:
    Zhouchen Lin, (Autor:in) / Rongrong Wang, (Autor:in) / Xiaoou Tang, (Autor:in) / Heung-Yeung Shum, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    2134912 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Detecting Doctored JPEG Images Via DCT Coefficient Analysis

    He, J. / Lin, Z. / Wang, L. et al. | British Library Conference Proceedings | 2006


    Method of detecting normality of PWM signal of airbag controller

    CHO CHUNG HOON | Europäisches Patentamt | 2024

    Freier Zugriff

    METHOD OF DETECTING NORMALITY OF PWM SIGNAL OF AIRBAG CONTROLLER

    CHO CHUNG HOON | Europäisches Patentamt | 2023

    Freier Zugriff

    Multivariate normality

    Crutcher, Harold L. / Falls, Lee W. | TIBKAT | 1976


    State Uncertainty Normality Detection

    Flegel, Sven K. / Bennett, James C. | Springer Verlag | 2020

    Freier Zugriff