The PID controller is one of the most popular controllers, due to its remarkable effectiveness, simplicity of implementation and broad applicability. However, the conventional approach for parameter optimization in PID controller is easy to produce surge and big overshoot, and therefore heuristics optimization methods such as genetic algorithm (GA), particle swarm optimization (PSO) are employed to enhance the capability of traditional techniques. One major problem of these algorithms is that they may be trapped in the local optima of the objective and lead to poor performance. In this paper, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to achieve better performance in dealing with local optima while reduce the computation complexity of PID parameter tuning process. Simulation results indicate that the proposed algorithm is effective and efficient, and demonstrate that the proposed algorithm exhibits a significant performance improvement over several other benchmark methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    PID controller tuning using particle filtering optimization


    Beteiligte:
    Jie Li, (Autor:in) / Tianyou Chai, (Autor:in) / Lisheng Fan, (Autor:in) / Li Pan, (Autor:in) / Jingkuan Gong, (Autor:in)


    Erscheinungsdatum :

    01.06.2010


    Format / Umfang :

    411081 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Controller Parameter Tuning Based on Particle Filtering

    Wakasa, Y. | British Library Online Contents | 2014


    Spacecraft controller tuning using particle swarm optimization

    Ahmed, R. / Chaal, H. / Gu, Da-Wei | Tema Archiv | 2009




    Controller Tuning

    Zacher, Serge | Springer Verlag | 2023