Deep Learning (DL) approaches have been explored in different modalities of biomedical image analysis, and they provide superior performance against alternative machine learning approaches. In this paper, we have evaluated the performance of a deep learning model called the Inception Recurrent Residual Convolutional Neural Network (IRRCNN) for White Blood Cell (WBC) and Red Blood Cell (RBC) classification. We have tested the performance of the IRRCNN approach on two publicly available blood cell datasets for both RBC and WBC classification obtained from the Yale School of medicine and CellaVision respectively. The experimental results show almost 100% recognition accuracy for the WBC dataset and 99.94% testing accuracy for RBC classification. This is approximately a 1.4% and 2.35% improvement when compared to existing deep learning-based approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Microscopic Blood Cell Classification Using Inception Recurrent Residual Convolutional Neural Networks


    Beteiligte:


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    1550215 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net)

    Alom, Md Zahangir / Yakopcic, Chris / Taha, Tarek M. et al. | IEEE | 2018


    Wide-Residual-Inception Networks for Real-Time Object Detection

    Lee, Youngwan / Cui, Xuenan / Hale, Kim et al. | British Library Conference Proceedings | 2017


    Wide-residual-inception networks for real-time object detection

    Lee, Youngwan / Kim, Huieun / Park, Eunsoo et al. | IEEE | 2017


    Classification of Assembly Operations Using Recurrent Neural Networks

    Papenberg, Björn / Rückert, Patrick / Tracht, Kirsten | Springer Verlag | 2022

    Freier Zugriff

    Visual Depth Mapping from Monocular Images using Recurrent Convolutional Neural Networks

    Mern, John M. / Julian, Kyle D. / Tompa, Rachael E. et al. | AIAA | 2019