A typical tracking algorithm takes its input from a peak detector or plot extractor. This process reduces the sensor image data to point measurements and reduces the volume of data that the tracker must process. However, useful information can be lost. This paper shows how the clutter of a peak can be a useful feature for discriminating false alarms and valid detections. The benefit obtained by using this feature is quantified through false track rate on recorded sensor data. On recorded data with difficult clutter conditions, approximately sixty percent of false tracks are rejected by exploiting peak curvature


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Clutter Rejection using Peak Curvature


    Beteiligte:
    Colegrove, S.B. (Autor:in) / Davey, S.J. (Autor:in) / Cheung, B. (Autor:in)


    Erscheinungsdatum :

    01.10.2006


    Format / Umfang :

    851974 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CORRESPONDENCE - Clutter Rejection using Peak Curvature

    Colegrove, S.B. | Online Contents | 2006


    PUSH BROOM CLUTTER REJECTION USING A MULTIMODAL FILTER

    CHOINIERE MICHAEL / COFFEY JAY / LANE JASON et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Background clutter rejection using generalized regression neural networks

    Waters, C.R. / Sommese, T. / Hibbeln, B. | IEEE | 2000



    Background Clutter Rejection Using Generalized Regression Neural Networks

    Waters, C. R. / Sommese, T. / Hibbeln, B. et al. | British Library Conference Proceedings | 2000