Firstly, we compare the performance of federal recommendation collaborative filtering algorithm model and centralized filtering algorithm model based on different application scenarios. The performance of the federal recommendation collaborative filtering model with different application scenarios in each scenario is compared and studied. Finally, we compare the effects of altered privacy protection strategies on the training process of federal recommendation collaborative filtering model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimental Comparison of Collaborative Filtering Algorithm Based on Federal Recommendation


    Beteiligte:
    Xu, Zijia (Autor:in) / Sun, Jiashi (Autor:in) / Zhang, Jiang (Autor:in) / Liu, Yupeng (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1040748 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Collaborative Filtering Recommendation Algorithm Based on Product Clustering

    Wang, P. | British Library Conference Proceedings | 2013


    A Collaborative Filtering Recommendation Algorithm Using Multiple Groups Intelligence

    Zheng, Xiumeng / Chen, Fucai / Wu, Qi et al. | British Library Online Contents | 2016


    User collaborative filtering recommendation algorithm based on adaptive parametric optimisation SSPSO

    Pan, Xiuqin / Zhou, Wenmin / Lu, Yong et al. | British Library Online Contents | 2017


    An Ontology-Based Collaborative Filtering Personalized Recommendation

    Wang, P. | British Library Conference Proceedings | 2013