With the emergence of communication systems and deep learning techniques, the native intelligence has been envisioned as a primary power of future networks. In this work, we investigate the schemes of distributed communication-computation integrated networks and propose a split learning based solution for multi-gNB intelligence, abbreviated as MgCSL. By carrying out a data-model split mechanism, MgC-SL mitigates the computation requirements of each node and enables more gNBs to participate the collaborative learning tasks. The simulation results verify that such distributed scheme significantly saves the communication and computation costs without the degradation of the task performance. A joint indicator is also formulated for performance analysis. Combining the proposed schemes and the corresponding indicator, some insights and guides for the system designs can be obtained to improve the efficiency of the next-generation network intelligence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Split Learning for Collaborative Intelligence in Next-generation Mobile Networks


    Beteiligte:
    Zhu, Zheqi (Autor:in) / Cheng, Wenjie (Autor:in) / Zeng, Yu (Autor:in) / Li, Kuikui (Autor:in) / Lou, Chong (Autor:in) / Zeng, Qinghai (Autor:in) / Gu, Zhifang (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1707507 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Reliability analysis of next generation mobile networks

    Guida, M. / Longo, M. / Postiglione, F. | British Library Conference Proceedings | 2010


    Next Generation Mobile Satellite Communication Architectures, Networks and Systems

    Stuart, J. R. / Stuart, J. G. / Canada; Communications Research Centre et al. | British Library Conference Proceedings | 1997


    The AGILE Paradigm: the next generation of collaborative MDO

    Ciampa, Pier Davide / Nagel, Björn | AIAA | 2017


    Towards Next-Generation Vehicles Featuring the Vehicle Intelligence

    Payalan, Yasin Firat / Guvensan, M. Amac | IEEE | 2020


    Towards next generation networks

    Legutko, C. | British Library Conference Proceedings | 2004