Matching algorithms use random-start local search and a 3D pose recovery algorithm to find optimal matches between 3D object models and 2D image features. An algorithm using only a a weak-perspective approximation to full 3D perspective solves a subset of the test problems presented. A second algorithm always uses an iterative 3D pose algorithm to account for 3D perspective and solves all test problems including those with varying 3D perspective. A third hybrid algorithm uses weak-perspective to direct search and 3D pose to periodically correct for perspective. It is faster than the second. A fourth algorithm is a hybrid which also uses a technique called 'subset-convergence ' to escape from some local optima. It performs best on the most difficult matching problems.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal geometric model matching under full 3D perspective


    Beteiligte:
    Beveridge, J.R. (Autor:in) / Riseman, E.M. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    987795 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Geometric Model Matching under Full 3D Perspective

    Beveridge, J. R. / Riseman, E. M. | British Library Online Contents | 1995


    Optimal Geometric Model Matching Under Full 3D Perspective

    Beveridge, J. R. / Riseman, E. M. / IEEE Computer Society; Technical Committee on Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1994


    Geometric Matching

    Kwon, Kye‐Si ;Ready, Steven | Wiley | 2014


    A Bayesian Approach to Model Matching with Geometric Hashing

    Rigoutsos, I. / Hummel, R. | British Library Online Contents | 1995


    Geometric Blur and Template Matching

    Berg, A. C. / Malik, J. / IEEE | British Library Conference Proceedings | 2001